Antitumor Activity of MPC-2130 in Human Hematopoietic Cell Lines and Ovarian and Prostate Tumor Xenografts in Athymic Nude Mice

Christopher M. Pleiman, Kimberly Mauck, Lynn DeMie, Orvelin Roman, Lori Fotheringham, Daniel Von Hoff, Adrian Hobden, Robert Carlson and Gary Mather

Myriad Pharmaceuticals Inc, 320 Wakara Way, Salt Lake City, UT 84108

ABSTRACT

MPC-2130 was discovered at Myriad Pharmaceuticals, Inc. as a result of an extensive medicinal chemistry effort. The original lead compound, from which MPC-2130 was derived, was discovered in a yeast–based high throughput screen. Targeted chemical modifications and additional medicinal chemistry efforts yielded MPC-2130, a highly active, orally available, small molecule that selectively inhibits the expression of the Bcl-2 family member, MCL-1. This compound is a novel, potent agent that induces apoptosis in a broad range of tumor cell lines, including hematopoietic, ovarian, and prostate cancers.

RESULTS

MPC-2130 was evaluated in a series of in vitro and in vivo assays designed to establish its antitumor activity in human tumors. These studies were designed to assess the ability of MPC-2130 to inhibit the growth of OVCAR-3 and RAMOS cell lines through an apoptotic mechanism. These studies also evaluated the pharmacokinetic parameters of the compound in mice. The preclinical data suggest that MPC-2130 may be an effective therapy against multiple tumor types in humans.

MATERIALS AND METHODS

Cytotoxicity of MPC2130 in hematopoietic and solid tumor systems.

MPC-2130 was tested in a series of in vitro and in vivo assays designed to establish its antitumor activity in human tumors. These studies were designed to assess the ability of MPC-2130 to inhibit the growth of OVCAR-3 and RAMOS cell lines through an apoptotic mechanism. These studies also evaluated the pharmacokinetic parameters of the compound in mice. The preclinical data suggest that MPC-2130 may be an effective therapy against multiple tumor types in humans.

RESULTS

MPC-2130 was tested in a series of in vitro and in vivo assays designed to establish its antitumor activity in human tumors. These studies were designed to assess the ability of MPC-2130 to inhibit the growth of OVCAR-3 and RAMOS cell lines through an apoptotic mechanism. These studies also evaluated the pharmacokinetic parameters of the compound in mice. The preclinical data suggest that MPC-2130 may be an effective therapy against multiple tumor types in humans.

CONCLUSIONS

- MPC-2130 is a highly potent and selective Bcl-2 family inhibitor that induces apoptosis in a broad range of tumor cell lines, including hematopoietic, ovarian, and prostate cancers.
- The preclinical data suggest that MPC-2130 may be an effective therapy against multiple tumor types in humans.
- MPC-2130 shows good pharmacokinetic parameters with high brain penetration.
- MPC-2130 significantly inhibits OVCAR-3 xenograft growth.
- MPC-2130 shows a trend toward inhibition of LNCaP xenograft growth.
- Animals dosed on a QD x 5 regimen do not lose significant body weight.